

Adjustable Analog Highpass Filter

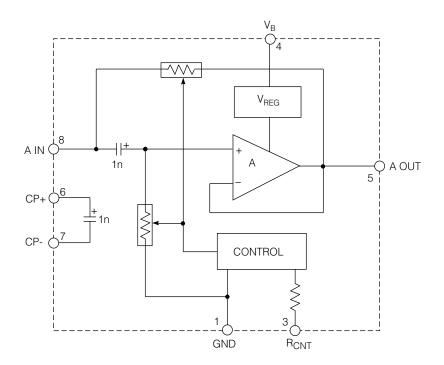
GH580 - DATA SHEET

FEATURES

- 200 to 8 kHz adjustable corner frequency
- 12 dB/oct Butterworth filter
- low current drain (175 µA typical)
- two on chip 1 nF capacitors
- low noise and distortion
- 1.1 to 3.0 VDC operation

STANDARD PACKAGING

- 8 pin PLID®
- Chip (66 x 61 mils)


DESCRIPTION

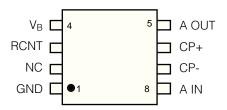
The GH580 is a single, second order (12 dB/Oct) continuous high pass filter with an adjustable corner frequency ($f_{\rm C}$) from 200 to 8 kHz. Adjustment of $f_{\rm C}$ is accomplished with a single 100 k Ω potentiometer connected from pin 3 to ground.

The bias circuitry is operated from an on chip voltage regulator providing good supply rejection down to 1.1 V.

The two integrated $1\,\text{nF}$ capacitors have parasitic diodes connected in parallel. This necessitates that the DC voltage at pin 6 be greater that 400 mV and less than V_B and that pins 8 and 7 be no greater than approximately 400 mV DC.

The GH580 has a dynamic range of approximately 80 dB.

BLOCK DIAGRAM


Revision Date: January 2001

Document No. 520 - 50 - 05

ABSOLUTE MAXIMUM RATINGS

PARAMETER	VALUE/UNITS			
Supply Voltage	5 V DC			
Power Dissipation	25 mW			
Operating Temperature Range -10°C to +40° (
Storage Temperature Range	-20°C to +70° C			
CAUTION CLASS 1 ESD SENSITIVITY				

PIN CONNECTION

ELECTRICAL CHARACTERISTICS

Conditions: Frequency = 1 kHz, Temperature = 25° C, V_B = 1.3V

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Amplifier Current	I _{AMP}		120	175	210	μΑ
Bias Voltage (Pin 6)	V _{P6}		-	100	-	mV
Bias Voltage (Pin 8)	V _{P8}		-	350	-	mV
Insertion Loss	I _{LOSS}	SW1 to closed, V_{IN} = 40 mVRMS	-	1.7	2.0	dB
Output Noise	O _{NOISE}	SW1 to closed, V _{IN} = 0 mVRMS NFB 200 Hz to 10 kHz at 12dB/oct	-	5	7	μV
Distortion	THD	SW1 to closed, $V_{IN} = 50 \text{ mVRMS}$	-	1	5	%
Supply Rejection (Pin 4 to Pin 5)	PSRR	Note 1, Pin 4 to Pin 5	48	56	-	dB
Corner Frequency	fc	Note 2, R _{CNT} = 10.27k	1300	1650	1900	Hz

All parameters and switches remain as shown in Test Circuit unless otherwise stated in "Conditions" column

Notes: 1. V_B modulated with 1kHz

2. $F_{C} = 1000 \times 2^{A}$; A = (I_{LOSS} - 20_{LOG} (V_{OUT} /0.04))/12

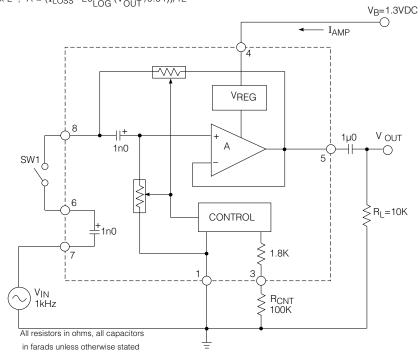


Fig. 1 Test Circuit

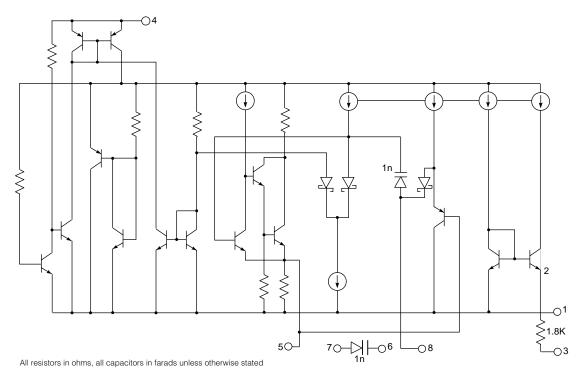
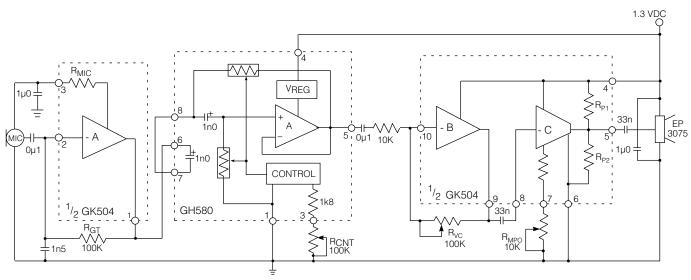



Fig. 2 Functional Schematic

All resistors in ohms, all capacitors in farads unless otherwise stated

Fig. 3 Typical Hearing Instrument Application

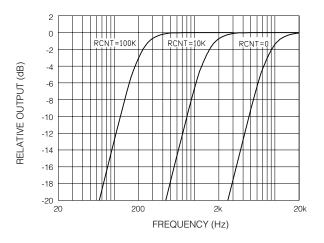


Fig. 4 Frequency Response at Various R_{CNT} Values

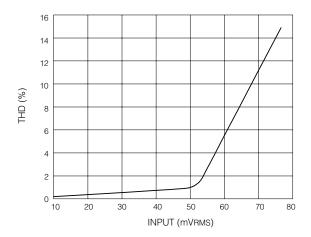


Fig. 5 Total Harmonic Distortion vs Input Level

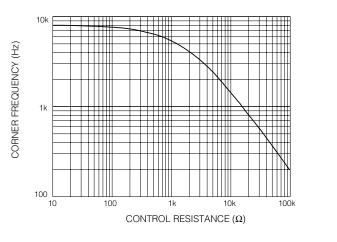


Fig. 6 Corner Frequency vs Control Resistance

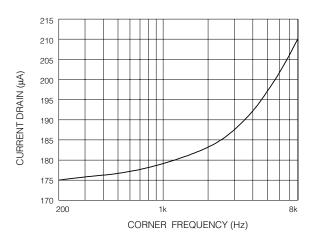


Fig. 7 Current Drain vs Corner Frequency

GENNUM CORPORATION MAILING ADDRESS: P.O. Box 489, Stn. A, Burlington, Ontario, Canada L7R 3Y3 Tel. +1 (905) 632-2996 Fax +1 (905) 632-2814 SHIPPING ADDRESS:	DOCUMENT IDENTIFICATION: DATA SHEET The product is in production. Gennum reserves the right to make changes at any time to improve reliability, function or design, in order to provide the best product possible.		
970 Fraser Drive, Burlington, Ontario, Canada L7L 5P5	REVISION NOTES:		
GENNUM JAPAN CORPORATION C-101, Miyamae Village, 2-10-42 Miyamae, Suginami-ku, Tokyo 168-0081, Japan Tel. +81 (3) 3334-7700 Fax: +81 (3) 3247-8839	Changes to standard packaging information		

Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement. © Copyright November 1991 Gennum Corporation. All rights reserved. Printed in Canada